DOI: 10.1002/ejic.200800435

Formation and Stability of the Gaseous Species LiAlCl₄, Li₂AlCl₅ and LiAl₂Cl₇ – Mass Spectrometric and Quantum Chemical Studies

H. Saal, [a] E. Milke, [a] C. Brünig, [a] M. Binnewies, *[a] and R. Köppe [b]

Keywords: Lithium / Mass spectrometry / Density functional calculations / Thermodynamics

The formation of the gaseous species LiCl, Li_2Cl_2 , AlCl_3 and LiAlCl_4 was shown by mass spectrometric studies of the reaction of solid LiCl with gaseous AlCl_3 at 575 °C. Besides AlCl_3 and Al_2Cl_6 , the gas complexes LiAlCl_4 , Li_2AlCl_5 and LiAl_2Cl_7 were formed during the evaporation of liquefied LiAlCl_4 . The structures of the molecules under discussion were computed

by quantum chemical DFT studies. Thermodynamic data of these molecules were determined by experimental methods (mass spectrometry), and the results were confirmed by theoretical calculations.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

The existence of gaseous molecules, gas complexes, of the type $M^IM^{'III}X_4$ (X = halogen) has long been known. Other compositions of such complexes as $M^I_2M^{'III}X_5$, M^I_3 . $M^{'III}X_6$ and $M^IM^{'III}_2X_7$ are known in particular cases. Examples are Cu_2InCl_5 , Cu_3InCl_6 and $CuIn_2Cl_7$. Gaseous halogen complexes are overviewed in ref. [1] They are formed through the heating of the appropriate metal halide mixtures or melts. Gas complexes containing alkali metal halides feature particularly high thermodynamic stabilities. [1]

However, thermodynamic data have been determined only for a few examples of those molecules. Compounds of this type, especially iodides, have recently become highly interesting for technical applications. Their formation is essential for the functionality of metal halide lamps, which contain lanthanide compounds like DyI₃, HoI₃ or TmI₃ besides alkali metal- or thallium iodides.^[2] The predominantly empirical approach to the development of lamp fillings is being replaced to an increasing degree by a science-based approach that is based upon mathematical modelling of the course of reactions in such lamps.^[3] Therefore, information on the reactions taking place in a lamp and the knowledge of thermodynamic data of each involved compound is required. Because the gas-phase composition over the solid phase is normally complex, classical methods for its determination fail. The experimental method of choice to solve this problem and hence to derive thermodynamic data of the gaseous species is the combination of Knudsen cell effusion technique with mass spectrometry.^[4]

Such measurements can be performed and exploited in two different ways: Firstly, the intensities I_i of the detected ions are gauged in dependency of the temperature T. From the slope and the axis intercept of the log $I_i T/T^{-1}$ plot enthalpy and entropy values are obtained (second law analysis). Alternatively, the equilibrium constant of an investigated reaction is determined at *one* temperature and the reaction enthalpy is determined out of it upon implementation of the entropy (third law analysis). When reaction entropy is known, this method has the advantage of being less time consuming than the second law analysis with comparable accuracy.

Nowadays, quantum chemical methods allow the theoretical calculation of thermodynamic data.^[5] Specifically, the standard entropy and the molar heat capacity can be computed reliably due to the comparability of experimentally and theoretically deduced vibrational spectra.

The aim of this work is the application of the abovementioned method to the LiCl/AlCl₃ system; hence, a combined experimental and theoretical method was employed to derive reaction enthalpies by third law analysis, and subsequently, values for the heat of formation of the involved gaseous molecules were determined. To verify the accuracy of the applied method, the experimentally obtained enthalpies of formation were compared to those obtained by theoretical methods.

Results and Discussion

Mass spectrometric studies on the LiCl/AlCl₃ system show the formation of the gaseous molecules LiAlCl₄, Li₂. AlCl₅ and LiAl₂Cl₇. These compounds were characterized by quantum chemical methods. The calculations provide structural information and thermodynamic data. The calculated standard entropies and heat capacities were used to

Callinstr. 9, 30167 Hannover Fax: +49511-762-2254

E-mail: binn@mbox.aca.uni-hannover.de

[b] University of Karlsruhe, Institute of Inorganic Chemistry

[[]a] Leibniz University of Hannover, Institute of Inorganic Chemistry

Table 1. Computed energy difference between LiAlCl₄ ($C_{2\nu}$) and LiAlCl₄ ($C_{3\nu}$) at different theoretical levels.

Method	E (LiAlCl ₄ $C_{2\nu}$) /Hartree	E (LiAlCl ₄ $C_{3\nu}$) /Hartree	$\Delta E \left(C_{2\nu} - C_{3\nu} \right) \left[\text{kJ mol}^{-1} \right]$
DFT/def-TZVPP MP2/def2-TZVPP	-2091.3897 -2088.6726	-2091.3885 -2088.6711	-3.1 -3.9
HF/SCF 3-21G*[11]	-2078.0515	-2078.0488	−3.9 −7.1
HF/SCF 6-31 G*[11]	-2087.6544	-2087.6501	-11.3

exploit the mass spectra by means of the third law method. The overall goal was to derive enthalpies of formation of the mentioned molecules from reaction enthalpies and to compare the values to the computed enthalpies.

Quantum Chemical Calculations

Ramondo et al. investigated[11] the energy difference between the bidentate isomer of LiAlCl₄ with $C_{2\nu}$ symmetry and the tridentate isomer with $C_{3\nu}$ symmetry (Figure 1) by Hartree–Fock self-consistent field calculations. By using basis sets of 3-21G* and 6-31G* quality, they reported an energy difference of 7 and 11 kJ mol⁻¹, respectively. In every case, the structure of the lowest energy corresponds to the molecule with $C_{2\nu}$ symmetry (Table 1).

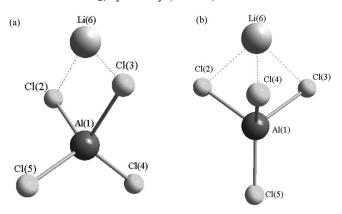
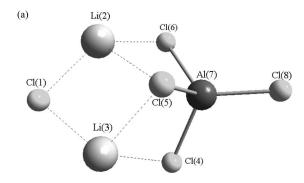
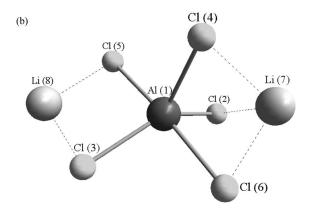




Figure 1. Two isomers of LiAlCl₄: (a) bidentate isomer (symmetry $C_{2\nu}$), $E_{\rm rel.} = 0 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$; (b) tridentate isomer (symmetry $C_{3\nu}$), $E_{\rm rel}$ $= 3.1 \text{ kJ mol}^{-1}$.

Improvement of these calculations is possible when taking into account the electron correlation. Determination of the structures and energies of the isomers by DFT calculations confirmed the former result: the energy difference was calculated to be 3.1 kJmol⁻¹. The accuracy of the DFT method applied for this molecule was tested by the MP2 method by using basis sets of def2-TZVPP quality, which yielded an energy difference of 3.8 kJ mol⁻¹. Results are summarized in Table 1. Due to the strong ionic nature of the bonds connected to the Li⁺ ion, the difference between these values is rather small (relative to the difference gained with the HF/SCF calculations in ref.[11]). Therefore, we decided to use the less computationally time consuming RI-DFT/BP86 method by applying def-TZVPP basis sets.

Three reasonable possible structures of Li₂AlCl₅ are shown in Figure 2. The Li₂AlCl₅ isomer with C_s symmetry (Figure 2a) with a fourfold coordinated Al centre resembles the ion pair [Li₂Cl]⁺[AlCl₄]⁻. It is energetically favoured with respect to the isomer with Al of coordination number 5 (Figure 2b, C_s symmetry) by 88 kJ mol⁻¹. The also fourfold-coordinated Al containing isomer with $C_{2\nu}$ symmetry (Figure 2c) has energy of 117 kJ mol⁻¹ (relative to that of the molecule shown in Figure 2a). In the case of LiAl₂Cl₇, the isomer shown in Figure 3a (C_s symmetry) is clearly the

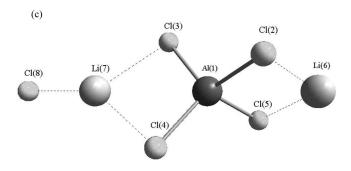
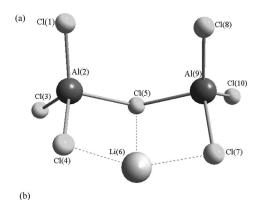



Figure 2. Three isomers of Li_2AlCl_5 : (a) symmetry C_s , $E_{rel.}$ = 0 kJ mol⁻¹; (b) symmetry C_s , $E_{rel.} = 88 \text{ kJ mol}^{-1}$; (c) symmetry C_{21} , $E_{\rm rel.} = 117 \,{\rm kJ}\,{\rm mol}^{-1}$.

energetically most stable one by 123.6 kJ mol⁻¹. The geometrical data of each energy minimum structure is summarized in Table 2.

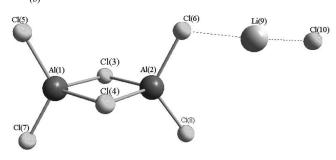


Figure 3. Two isomers of LiAl₂Cl₇: (a) symmetry C_1^* , $E_{rel.} = 0 \text{ kJ mol}^{-1}$ (*slightly distorted C_s symmetry); (b) symmetry C_s , $E_{rel.} = 123.6 \text{ kJ mol}^{-1}$.

Thermodynamic data (entropy, enthalpy and heat capacity each at 298 K as well as at the reaction temperature) were obtained by employing the FREEH module of the TURBOMOLE program package. With experience from other studies^[15] the RI-DFT/BP86 method with the use of extensive basis sets leads to reliable structural, energetic and vibrational data. However, to estimate the accuracy of our method with regard to the type of reactions we explore by mass spectrometry, we determined theoretically the reaction enthalpy of the equilibrium in Equation (1) by both the RI-DFT/BP86/def-TZVPP and the MP2/def2-TZVPP methods. Considering the expected allowance for the calculation of the reaction enthalpies (±20 kJ mol⁻¹), the RI-DFT results are in excellent agreement with the experimental value (Table 3).

Table 2. Structural data for the most stable isomers of $LiAlCl_4$, Li_2AlCl_5 and $LiAlCl_7$.

Compound	Symmetry	r	[pm]	Angle	[°]
LiAlCl ₄	$C_{2 m V}$	Al ₁ -Cl _{4,5} Al ₁ -Cl _{2,3} Li ₆ -Cl _{2,3}	212 226 223	Cl ₂ -Li ₆ -Cl ₃ Cl ₂ -Al ₁ -Cl ₃ Cl ₂ -Al ₁ -Cl ₅	99 97 109.9
Li ₂ AlCl ₅	$C_{ m s}$	Cl ₁ -Li _{2,3} Li ₂ -Cl ₅ Li ₃ -Cl ₅ Cl ₅ -Al ₇ Al ₇ -Cl _{4,6}	219.7 259 259.5 222.5 219.9	Li ₂ -Cl ₁ -Li ₃ Li ₂ -Cl ₅ -Li ₃ Li _{2,3} -Cl ₅ -Al ₇ Cl ₅ -Al ₇ -Cl _{4,6} Cl ₅ -Al ₇ -Cl ₈	84 69 81 100 115
LiAlCl ₇	C_1	Cl ₁ -Al ₂ Cl ₃ -Al ₂ Cl ₄ -Al ₂ Cl ₅ -Al ₂ Li ₆ -Cl _{4,7} Cl ₅ -Li ₆	210.0 211.2 221.2 238 227 254.9	Cl ₁ -Al ₂ -Cl ₃ Cl ₁ -Al ₂ -Cl ₄ Cl ₄ -Al ₂ -Cl ₅ Al ₂ -Cl ₅ -Al ₉ Cl ₄ -Li ₆ -Cl ₇	121 113 97 124 134

To compute the standard heat of formation of LiAlCl₄, Li₂AlCl₅, and LiAl₂Cl₇, the reaction enthalpies and entropies for the equilibrium reactions depicted in Equations (1)–(3) were computed.

$$LiCl(g) + AlCl3(g) \rightleftharpoons LiAlCl4(g)$$

$$\Delta_R H^0 = -175.6 \text{ kJ mol}^{-1}$$
(1)

$$\text{Li}_2\text{Cl}_2(g) + \frac{1}{2}\text{Al}_2\text{Cl}_6(g) \rightleftharpoons \text{Li}_2\text{AlCl}_5(g)$$
 (2)
 $\Delta_R H^0 = -92.8 \text{ kJ mol}^{-1}$

$$LiAl_2Cl_7(g) + LiAlCl_4(g) \rightleftharpoons Li_2AlCl_5(g) + Al_2Cl_6(g)$$

$$\Delta_R H^0 = -16.8 \text{ kJ mol}^{-1}$$
(3)

Equation (1) corresponds to the proposed reaction in the Knudsen cell (see above) and was used to derive the standard heat of formation for LiAlCl₄ upon analysis of the mass spectra. Contrary to the mass spectrometric studies (see above) we chose Equation (2) [instead of $2\text{LiAlCl}_4(g) \Rightarrow \text{Li}_2\text{AlCl}_5(g) + \text{AlCl}_3(g)]$ to derive the heat of formation for Li₂AlCl₅, because it only consist of molecules with known heat of formation and thus does not entail the error of LiAlCl₄. We chose Al₂Cl₆ as a reactant instead of AlCl₃, because it features a halogen bridge. Equation (3) corresponds to the experiment (see above) and was used for the

Table 3. Comparison of computed reaction enthalpy and entropy at different levels of theory for the reaction $LiCl(g) + AlCl_3(g) \rightleftharpoons LiAlCl_4(g)$ at room temperature and at 848 K (experimental conditions).

	MP2/def	MP2/def2-TZVPP		DFT/def-TZVPP	
	T = 298.15 K	T = 848 K	T = 298.15 K	T = 848 K	T = 848 K
$\Delta_{\rm R} H^0 [{\rm kJ mol^{-1}}]$	-202.0	-195.2	-175.6	-168.7	-172.1 ^[a]
$\Delta_{\rm R} S^0$ [J K mol]	-137.7	-125.0	-134.8	-122.0	_
$\Delta_{\rm R} G^0$ [kJ mol ⁻¹]	-161.0	-89	-135.4	-65.5	$-68.6^{[b]}$
K [bar ⁻¹]	1.7×10^{28}	3.1×10^{5}	5.3×10^{23}	1.0×10^{4}	$1.7 \times 10^{4[b]}$

[a] $\Delta_R H^0(\exp)$ derived from third law analysis. [b] $\Delta_R G^0(\exp)$ and $K(\exp)$ derived from $\Delta_R H^0(\exp)$ and $\Delta_R S^0$ (calculated by DFT/def-TZVPP method).

Table 4. Thermodynamic data of the involved molecules: standard heat of formation, standard entropy and the coefficients a, b, c, d of the molar heat capacity $C_p^0 = a + b \times 10^{-3} T + c10^6 T^{-2} + d10^{-6} T^2$.

Compound	$\Delta_{\rm f} H^0_{298} [{\rm kJ mol^{-1}}]$ exp./calcd.	S_{298}^{0} [J K ⁻¹ mol ⁻¹] exp./calcd.	$a [J K^{-1} mol^{-1}]$ exp./calcd.	b [J K ⁻² mol ⁻¹] exp./calcd.	c [JK mol ⁻¹] exp./calcd.	d [J K ⁻³ mol ⁻¹] exp./calcd.
LiCl(s)	-408.6 ^[14] /-	118.0 ^[14] /-	42.15 ^[14] /-	22.76 ^[14] /-	-0.08 ^[14] /-	0[14]/_
LiCl(g)	$-195.7^{[14]}/-$	212.9[14]/212.9	36.56 ^[14] /36.59	$1.07^{[14]}/0.77$	$-0.32^{[14]}/-0.33$	$0^{[14]}/-0.20$
$Li_2Cl_2(g)$	$-593.5^{[14]}/-$	288.8[14]/290.6	82.27 ^[14] /81.97	$0.54^{[14]}/1.11$	$-0.91^{[14]}/-1.03$	$0^{[14]}/-0.28$
AlCl ₃ (g)	$-584.6^{[14]}/-$	314.5[14]/315.7	81.97 ^[14] /81.72	$0.63^{[14]}/1.33$	$-0.99^{[14]}/-0.89$	$0^{[14]}/-0.34$
$Al_2Cl_6(g)$	$-1295.7^{[14]}/-$	475.0 ^[14] /479.8	180.92 ^[14] /180.69	$1.05^{[14]}/2.09$	$-2.04^{[14]}/-1.84$	$0^{[14]}/-0.53$
LiAlCl ₄ (g)[a]	-959.9/-955.9	-/393.8	-/120.78	-/28.47	-/-1.0	-19.16
$Li_2AlCl_5(g)^{[b]}$	-1345.9/-1334.2	-/467.9	-/167.69	-/35.39	-/-1.34	-23.83
$LiAl_2Cl_7(g)^{[c]}$	-1655.6/-1637.7	-/570.94	-/211.67	-/48.91	-/-1.62	-32.82

[a] Calculated from LiCl(g) + AlCl₃(g) \rightleftharpoons LiAlCl₄(g). [b] Calculated from Li₂Cl₂(g) + 0.5 Al₂Cl₆(g) \rightleftharpoons Li₂AlCl₅(g). [c] Calculated from LiCl(g) + Al₂Cl₆ \rightleftharpoons LiAl₂Cl₇.

derivation of the heat of formation of LiAl₂Cl₇, because it features an equal number of particles on both sides.

Taking into account the experimentally known values for the heat of formation [LiCl(g), AlCl₃(g), Li₂Cl₂(g), Al₂Cl₆(g)]^[14] and the reaction energy, the heat of formation for LiAlCl₄(g), Li₂AlCl₅(g) and LiAl₂Cl₇(g) was obtained. These values as well as the standard entropies $S_{298}^{\ 0}$ and the heat capacities $C_p^{\ 0}$ are summarized in Table 4.

Mass Spectrometric Studies

The reaction between LiCl and AlCl₃ in the gas phase was studied by mass spectrometry by employing a Knudsen cell in two ways: (1) LiCl was heated in a Knudsen cell^[12] to 575 °C in order to detect the vapour by mass spectrometry. A flow of gaseous AlCl₃ was led over the solid/gas LiCl system, and the resulting vapour composition was analyzed. (2) Previously synthesized LiAlCl₄ was vapourized at 230 °C from a Knudsen cell, and the vapour was analyzed.

Step 1

LiCl (150 mg) was heated to 575 °C in the upper part of a double Knudsen cell. According to the literature, [14] the monomer LiCl(g) has a partial pressure of 3.5×10^{-6} bar at this temperature. At the bottom of the Knudsen cell, AlCl₃ was vapourized at 80 °C, and thus, it was subsequently brought to reaction with the gaseous LiCl at 575 °C. To make sure that during the measurement the solid phase in the upper part consists of pure LiCl (and not an undefined LiCl/AlCl₃ melt), the mass spectrum to be analyzed was recorded soon after a constant AlCl₃ vapour pressure was established. The following mass spectrum was registered from the m/z = 30 ion (absolute intensities in arbitrary units): LiCl⁺ (1956), Li₂Cl⁺ (5179), AlCl⁺ (719), AlCl₂⁺ (6659), AlCl₃⁺ (1849), LiAlCl₃⁺ (566). These ions indicate the formation of the gas molecules LiCl (LiCl⁺), Li₂Cl₂ (Li₂Cl⁺), AlCl₃ (AlCl⁺, AlCl₂⁺, AlCl₃⁺) and LiAlCl₄ (LiAlCl₃⁺).

From this measurement, the reaction enthalpies for the following reactions were derived:

$$2 \text{ LiCl}(g) \rightleftharpoons \text{Li}_2\text{Cl}_2(g)$$

 $\text{LiCl}(g) + \text{AlCl}_3(g) \rightleftharpoons \text{LiAlCl}_4(g)$

By applying the third law method, the equilibrium constant was determined at one temperature and the reaction entropy was computed upon implementation of the quantum chemically calculated reaction entropy:

$$\begin{split} &\Delta_{\mathrm{R}}G^0 = -RT\mathrm{ln}K \\ &\Delta_{\mathrm{R}}G^0 = \Delta_{\mathrm{R}}H^0 - T\Delta_{\mathrm{R}}S^0 \end{split}$$

To calculate the partial pressure of the mother molecules from the recorded ion intensities, we made use of the following relation:

$$p_{i} = c \sum I_{i} T \tag{4}$$

 p_i = partial pressure of ion i [bar]

c = proportional constant (has to be determined experimentally)

 $\sum I_i$ = sum of all ion intensities belonging to one mother molecule

T = equilibrium temperature [K]

The proportional constant results from the above-named values.

$$c = p_i / \sum I_i T = 2.1 \times 10^{-12} \text{ bar K}^{-1}$$

By means of this factor, the following partial pressures and equilibrium constants can be calculated:

$$p(AlCl_3) = 1.7 \times 10^{-5} \text{ bar}$$

 $p(LiAlCl_4) = 1.0 \times 10^{-6} \text{ bar}$

$$p(\text{Li}_2\text{Cl}_2) = 9.3 \times 10^{-6} \text{ bar}$$

$$2 \operatorname{LiCl}(g) \rightleftharpoons \operatorname{Li}_2\operatorname{Cl}_2(g) \tag{5}$$

$$K_p(5) = 7.6 \times 10^5 \text{ bar}^{-1}$$

$$LiCl(s) + AlCl3(g) \rightleftharpoons LiAlCl4(g)$$

$$Kn(6) = 1.7 \times 10^4 \text{ bar}^{-1}$$
(6)

Taking into account the known value for the reaction entropy for Equation (5) $\Delta_R S^0(5)_{848} = -129.6 \text{ J K}^{-1} \text{mol}^{-1},^{[13]}$ the obtained reaction enthalpy is $\Delta_R H^0(5)_{848} = -205.5 \text{ kJ mol}^{-1}$. The comparison to the literature (-203.2 kJ mol $^{-1}[13]$) evidences an excellent agreement.

To study and exploit Equation (6) in an analogous manner, the reaction entropy was calculated quantum chemically. For a reaction temperature of 575 °C, a reaction entropy of $\Delta_{\rm R} S^0(6)_{848} = -122~{\rm J\,K^{-1}\,mol^{-1}}$ was obtained, resulting in a reaction enthalpy of $\Delta_{\rm R} H^0(6)_{848} = -120~{\rm J\,K^{-1}\,mol^{-1}}$

 $-172.1 \text{ kJ} \, \text{mol}^{-1}$. By using literature data^[14] for the standard heat of formation and standard entropy of LiCl(g) and AlCl₃(g) and by taking into account the quantum chemically calculated molar heat capacity of the involved molecules, the result for the standard heat of formation of Li-AlCl₄ is $\Delta_f H^0(\text{LiAlCl}_4)_{298} = -959.1 \, \text{kJ} \, \text{mol}^{-1}$. This is in excellent agreement with the quantum chemically determined value of $\Delta_f H^0(\text{LiAlCl}_4)_{298} = -955.9 \, \text{kJ} \, \text{mol}^{-1}$.

Step 2

From the vapour above a melt of LiAlCl₄ at 230 °C, the following mass spectrum from the m/z=30 ion was registered [ion (absolute intensities in arbitrary units): Li₂Cl⁺ (1505), AlCl⁺(403), AlCl₂⁺(7560), AlCl₃⁺(10402), LiAlCl₃⁺(3308), Li₂AlCl₄⁺(5562), Al₂Cl₅⁺(3048), LiAl₂Cl₆⁺(274)]. The Li₂Cl⁺ ion seems to indicate the formation of Li₂Cl₂(g). Because the vapour pressure of LiCl at this temperature of 503 K lies beneath the detection limit of the measurement setup, the Li₂Cl⁺ ion must originate from another mother molecule. The only other detected molecule containing two lithium atoms is Li₂AlCl₅. Thus we make the following assignment: AlCl₃: AlCl₃⁺, AlCl₃⁺, $\Sigma I = 18365$; Al₂Cl₆: Al₂Cl₅⁺, $\Sigma I = 3048$; LiAlCl₄: LiAlCl₃⁺, $\Sigma I = 3308$; Li₂AlCl₅: Li₂Cl⁺, Li₂AlCl₄⁺, $\Sigma I = 7067$; LiAl₂Cl₇: LiAl₂Cl₆⁺, $\Sigma I = 274$.

When analyzing a mass spectrum involving homogeneous gas equilibriums, thermodynamically it is reasonable – if possible – to choose such an equilibrium with equal numbers of molecules or particles on both sides of the equilibrium. In that case, the determination of the partial pressures from the recorded intensities is not necessary. Thus, the partial pressures in the law of mass action can be replaced by the intensities; this approach minimizes the mistake at evaluation and is to be preferred to the approach employing a separate calibration for the determination of c in Equation (4).

Firstly, we exploit the following equilibrium:

$$2 \text{ LiAlCl}_4(g) \rightleftharpoons \text{Li}_2\text{AlCl}_5(g) + \text{AlCl}_3(g)$$

$$K_p = \frac{p(\text{Li}_2\text{AlCl}_5)p(\text{AlCl}_3)}{p^2(\text{LiAlCl}_4)} = 11.9$$

With the quantum chemically calculated reaction entropy $\Delta_{\rm R}S^0_{503} = -3.9~{\rm J\,K^{-1}\,mol^{-1}}$, a reaction enthalpy at 503 K of $\Delta_{\rm R}H^0_{503} = -12.3~{\rm kJ\,mol^{-1}}$ is obtained, and by considering the molar heat capacities, a reaction enthalpy at 298 K of $\Delta_{\rm R}H^0_{298} = -12.3~{\rm kJ\,mol^{-1}}$ is obtained. Taking into account the former determined heat of formation of Li-AlCl₄ and the known heat of formation of AlCl₃ results in $\Delta_{\rm f}H^0_{298}({\rm Li}_2{\rm AlCl}_5) = [-12.3 - (-584.6) + 2\cdot (-959.1)]~{\rm kJ\,mol^{-1}} = -1345.9~{\rm kJ\,mol^{-1}}$ for the heat of formation of Li₂AlCl₅. This value is in good agreement with the quantum chemically obtained value of $\Delta_{\rm f}H^0_{298}({\rm Li}_2{\rm AlCl}_5) = -1334.2~{\rm kJ\,mol^{-1}}$.

To determine the standard heat of formation of LiAl₂Cl₇, the following equilibrium was studied and exploited: LiAl₂Cl₇(g) + LiAlCl₄(g) \rightleftharpoons Li₂AlCl₅(g) + Al₂Cl₆(g)

$$K_p = \frac{p(\text{Li}_2\text{AlCl}_5)p(\text{Al}_2\text{Cl}_6)}{p(\text{LiAl}_2\text{Cl}_7)p(\text{LiAlCl}_4)} = 23.8$$

With the quantum chemically determined reaction entropy $\Delta_R S^0_{503} = -17.0 \text{ J K}^{-1} \text{ mol}^{-1}$ a reaction enthalpy at 503 K of $\Delta_R H^0_{503} = -35.1 \text{ kJ mol}^{-1}$ is obtained and a reaction enthalpy at 298 K of $\Delta_R H^0_{298} = -35.1 \text{ kJ mol}^{-1}$ is obtained by considering the computed molar heat capacities. This value and the mass spectrometrically derived standard heat of formation of LiAlCl₄ and Li₂AlCl₅ as well as the known heat of formation of Al₂Cl₆ allow the calculation of the standard heat of formation of LiAl₂Cl₇:

$$\Delta_{\rm f} H^0_{298}({\rm LiAl_2Cl_7}) = (35.1 - 1345.9 - 1295.7 + 955.9) \text{ kJ}$$

 ${\rm mol^{-1}} = -1655.6 \text{ kJ} \, {\rm mol^{-1}}$

Considering the expected allowance of $\pm 30 \text{ kJ mol}^{-1}$, this value is in good agreement with the quantum chemically computed value of $\Delta_{\rm f} H^0_{298}({\rm LiAl_2Cl_7}) = -1637.7 \text{ kJ mol}^{-1}$. Thus, our mass spectrometric studies were able to detect and analyze hitherto unknown molecules.

Conclusions

The quantum chemical studies provide hints for the structural configuration of the molecules LiAlCl₄, Li₂AlCl₅ and LiAl₂Cl₇ found in the mass spectrometer. The structural determination of these molecules by conventional spectroscopic or diffraction techniques is almost impossible due to their nature as "high-temperature species".

Thus, the combination of Knudsen cell mass spectrometry and quantum chemical calculations proved to be an appropriate method for the qualitative characterization of high-temperature vapours.

Experimental Section

Sample Preparation: The synthesis of LiAlCl₄ was carried out in quartz glass ampoules (i.d. 15 mm, length 200 mm). To eliminate trace amounts of water, the ampoules were heated for about 10 min under vacuum with a heat gun. Afterwards, the ampoules were ventilated with argon and subsequently filled with lithium and aluminium chloride. The stoichiometric mixture of about 2 g was sealed in the ampoule under vacuum ($<5 \times 10^{-3}$ mbar). The following starting materials were used: LiCl (Merck, p.a. > 99.0%) and AlCl₃, (Sigma–Aldrich, powder, 98%). The mixture was slowly heated up to 240 °C and kept at this temperature for 5 h.

Analysis: Mass spectrometric investigations were carried out by using a mass spectrometer Finigan type 212. The ionization was carried out by electron bombardment with electron energy of 70 eV.

Quantum Chemical Calculations: The quantum chemical calculations on the molecules LiAlCl₄, Li₂AlCl₅ and LiAl₂Cl₇ were performed by employing the program package TURBOMOLE.^[5] The determination of the electronic structure as well as the calculation of the total energies was carried out with the RI-DFT/BP86 method [b-p functional, type GGA, exchange: S + B88, correlation: VWN(V) + P86]^[6–10] by employing def-TZVPP basis sets.

^[1] H. Schäfer, Angew. Chem. 1976, 88, 775.

^[2] M. Born, T. Jüstel, Chem. Uns. Zeit 2006, 40, 294.

- [3] K. Hilpert, U. Niemann, Thermochim. Acta 1997, 299, 49.
- [4] K. Hilpert, Ber. Bunsenges. 1980, 84, 494.
- [5] R. Ahlrichs, M. Bär, M. Häser, H. Horn, u. C. Kölmel, *Chem. Phys. Lett.* 1989, 162, 165.
- [6] P. A. M. Dirac, Proc. R. Soc. 1929, A123, 714.
- [7] J. C. Slater, Phys. Rev. 1951, 81, 385.
- [8] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
- [9] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [10] J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
- [11] F. Ramondo, L. Bencivenni, M. Spoliti, J. Mol. Struct, 1992, 277, 171.
- [12] M. Binnewies, Z. Anorg. Allg. Chem. 1977, 435, 156.
- [13] JANAF, Thermochemical Tables, J. Phys. Chem. Ref. Data, 1985, 14 Suppl. No. 1, ACS, NBS.
- [14] M. Binnewies, E. Milke, Thermochemical Data of Elements and Compounds, 2nd ed., Wiley-VCH, 2002.
- [15] H. J. Himmel, J. Bahlo, M. Haussmann, F. Kurth, G. Stoesser, H. Schnoeckel, *Inorg. Chem.* 2002, 41, 4952–4960.

Received: April 28, 2008 Published Online: August 12, 2008

www.eurjic.org